Deshielding of Carbon-13 Nuclei by Attached Iodine Atoms. Solvent Effects on Carbon-13 Chemical Shifts in Alkyl Iodides

By ANTHONY MARKER, DAVID DODDRELL,* and N. V. RIGGS

(Department of Organic Chemistry, University of New England, Armidale, N.S.W., 2351, Australia)

Summary Deshielding of carbon-13 nuclei occurs upon replacement of hydrogen by iodine at secondary and tertiary carbon atoms and may be related to the low electron density at the carbon atom as a consequence of the highly ionic character of the C-I bond in these cases; large solvent effects occur at the carbon atom directly bonded to iodine and affect substituent-effect parameters, the solvent shift varies linearly with the Onsager reactionfield.

PREVIOUS studies on alkyl¹⁻⁵ and aryl^{6,7} iodides by ¹³C n.m.r. spectroscopy have all emphasized that replacement of hydrogen by iodine results in shielding at the directly bonded carbon atom. The substituent-effect parameter, A_{α}^{I} , defined by $A_{\alpha}^{I} = \delta_{\alpha}^{I} - \delta_{\alpha}^{H}$, where δ_{α}^{I} and δ_{α}^{H} are chemical shifts relative to the same reference for the α -carbon atom in the iodo-compound and the corresponding hydrocarbon, respectively, ranges from ca + 6 p.p.m. for primary alkyl iodides³ to ca + 42 p.p.m. for acetyl iodide.⁶ Solvent effects on ¹³C chemical shifts have been reported for various

systems^{2,8-12}; solvent shifts observed were small (less than, say, l p.p.m.) except where hydrogen bonding occurred^{9,10} or for the cases of CH_3Br^2 and $CH_3I^{2,8}$.

We have now measured proton noise-decoupled, naturalabundance ¹³C n.m.r. spectra of some representative alkyl iodides in various solvents (see Table). The solvent shift Δ_i refers to the upfield shift of the signal for the *i*th nucleus for a dilute solution in the given solvent (or for the neat liquid) relative to the same signal for a dilute solution in cyclohexane. For each iodide studied solvent shifts for the α -(iodine-bearing) carbon atom are large (2.5 p.p.m. or more) and negative, *i.e.* the signals appear at lower fields for solvents more polar than cyclohexane. Buckingham¹³ has predicted, on the basis of the Onsager model¹⁴ for the reaction field of a polar molecule in a medium of dielectric constant ϵ , that ¹³C screening constants in substituted methanes should depend linearly on the function, $(\epsilon - 1)/$ $(2\epsilon + n^2)$, where n is the refractive index of the solute molecule. The prediction¹³ appeared to fail to account for solvent dependence of ¹³C chemical shifts for CH_aI and

J.C.S. CHEM. COMMS., 1972

CH₃CN,⁸ but the choice of solvents in that work has been criticized.¹⁵ For the limited number of solvents so far used in the present work, solvent shifts for the α -carbon atoms are in fact reasonably linear functions of $(\epsilon - 1)/\epsilon$ $(2\epsilon + n^2)$, where ϵ is the dielectric constant as calculated¹⁶ from the known composition of the solution and the dielectric constants of its components. Smaller but still appreciable downfield solvent shifts (up to 0.9 p.p.m.) or, in one case, a small upfield shift (0.1 p.p.m.) are observed for the terminal methyl (ω -) carbon atoms, but we cannot rationalize these effects simply. Solvent shifts for the remaining carbon atoms are small (0.1 - 0.2 p.p.m.).

may produce a large deshielding effect. The change from shielding for 1-iodoethane to deshielding for 2-iodopropane and 2-iodo-2-methylpropane may be stated in the alternative form that successive methyl substituents at the α -carbon atom each produce a change of $-12\cdot3$ p.p.m. in A_{α}^{I} . Mason¹⁹ has proposed that shielding of ¹³C nuclei on attachment to iodine arises because local electron circulations on the iodine atom make additional contributions to the diamagnetic component of the ¹³C screening tensor. Presumably, then, deshielding in the above cases is due to even greater contributions to the paramagnetic component of the screening tensor such as would result from a decrease in electron

Alkyl iodide			Solventb	C-1	C-2	C-3	C-4	C-5	C-6	C-7	Δ^{o}_{α}	Δ_{ω}^{c}	Α ¹⁰ α
1-Iodoethane			С	198-1	172.9								+10.9
			N	193.9	172.0						-4.2	-0.9	•
			NM	193.7	172.7						-4.4	-0.2	
			\mathbf{DMF}	$192 \cdot 9$	$172 \cdot 2$						-5.2	-0.7	
1-Iodopentane	••		С	189.4	159.4	160.1	171.3	179.7					+10.1
			N	186.6	159.3	160.0	$171 \cdot 1$	178.9			-2.8	-0.8	•
			NM	185.5	$159 \cdot 2$	160.0	171.2	179.6			-3.9	-0.1	
			DMF	185.0	159.2	160.0	$171 \cdot 2$	179.2			-4.4	-0.5	
1-Iodoheptane			С	$189 \cdot 2$	159.0	$162 \cdot 2$	164.5	161.0	170.3	179.4			+10.1
			N	186.7	159.0	162.2	164.5	161.0	170.2	$178 \cdot 8$	-2.5	-0.6	•
			NM	$185 \cdot 4$	158.9	$162 \cdot 2$	164.5	161.0	170.2	179.3	-3.8	-0.1	
			\mathbf{DMF}	184.8	158.8	d	164.5	160.9	170.2	179.0	4.4	-0.4	
2-Iodopropane			С	161·9°	175.6								- 1.4
			Ν	161·l•	172.3						3·3	-0.8	
			NM	162·0°	170.1						-5.5	+0.1	
			\mathbf{DMF}	161.6e	169.7						-5.9	-0.3	
2-Iodo-2-methylpropane		С	152.6 ^t	$154 \cdot 2$								-13.7	
511			N	151.71	150.8						-3.4	-0.9	
			NM	152·6 ^t	147.1						-7.1	0.0	

TABLE. Carbon-13 shifts^a and some derived parameters for alkyl iodines

^a In p.p.m. upfield from CS₂. Values are for dilute (ca. 0.05 mole fraction) solutions or the neat liquids; ^b C = cyclohexane; N = neat liquid; NM = nitromethane; DMF = NN-dimethylformamide. The last three contained a trace of cyclohexane as internal reference; • As defined in the text; • Obscured by DMF resonance; • Two-carbon resonance; • Three-carbon resonance.

As large solvent effects on ¹³C chemical shifts may occur, in general substituent-effect parameters calculated without regard to the solvents used should be treated circumspectly. Values of A^{I}_{α} given in the Table have been calculated from chemical shifts for dilute solutions of the iodides in cyclohexane and literature values 2,17,18 for the parent alkanes for which we assume solvent shifts may be neglected. Whereas replacement by iodine of hydrogen in a methyl group results in shielding of the carbon atom by 10-11 p.p.m., similar substitution at a secondary or tertiary carbon atom density at the carbon atom owing to an increase in ionic character of the C-I bond.20,21 Evidence for the latter increase is found in the substantial decreases in iodine quadrupole coupling constants upon successive methyl substitution at the α -carbon atom in alkyl iodides.²²

This work is being extended to a variety of solute-solvent systems. We thank Professor R. H. Stokes for useful discussions, and the Australian Research Grants Committee for financial support.

(Received, 10th April 1972; Com. 595.)

¹ P. C. Lauterbur, Ann. New York Acad. Sci., 1958, 70, 841.

- ² H. Spiesecke and W. G. Schneider, J. Chem. Phys., 1961, 35, 722.
- ⁸ T. D. Brown, Ph.D. Thesis, University of Utah, 1966.
- W. M. Litchman and D. M. Grant, J. Amer. Chem. Soc., 1968, 90, 1400.
 G. E. Maciel, J. Chem. Phys., 1965, 42, 2746.
- ⁶ H. Spiesecke and W. G. Schneider, J. Chem. Phys., 1961, 35, 731.
- ⁷ P. C. Lauterbur, J. Chem. Phys., 1963, 38, 1406.
- ⁸ J. K. Becconsall and P. Hampson, Mol. Phys., 1965, 10, 21.
- ⁹ G. E. Maciel and D. D. Traficante, J. Amer. Chem. Soc., 1966, 88, 220 and references therein.
 ¹⁰ R. L. Lichter and J. D. Roberts, J. Phys. Chem., 1970, 74, 912.
- ¹¹ M. Bacon, G. E. Maciel, W. K. Musker, and R. Scholt, J. Amer. Chem. Soc., 1971, 93, 2537.

- ¹⁴ M. Bacon, G. E. Mattel, W. K. Musker, and K. Scholt, J. Amer. C.
 ¹⁹ G. C. Levy and J. D. Cargioli, J. Magnetic Res., 1972, 6, 143.
 ¹³ A. D. Buckingham, Canad. J. Chem., 1960, 38, 300.
 ¹⁴ L. Onsager, J. Amer. Chem. Soc., 1936, 58, 1486.
 ¹⁵ P. Laszlo, Progr in N.M.R. Spectroscopy, 1967, 3, 231.
 ¹⁶ D. Decroocq, Bull. Soc. chim. France, 1964, 127.
 ¹⁷ D. M. Grant and E. G. Paul, J. Amer. Chem. Soc., 1964, 86, 2984.
 ¹⁸ L. D. Judermon and L. O. Adoms Analytic Chem. 1971, 43, 1245.
- ¹⁸ L. P. Lindeman and J. Q. Adams, Analyt. Chem., 1971, 43, 1245.
 ¹⁹ J. Mason, J. Chem. Soc. (A), 1971, 1038.

- ²⁰ J. A. Pople, Mol. Phys., 1963, 7, 301.
 ²¹ B. V. Cheney and D. M. Grant, J. Amer. Chem. Soc., 1967, 89, 5319.
- ²² W. Zeil, W. Hüttner, and W. Plein, Z. Naturforsch., 1962, 17a, 823.